不定方程式 \(ax + by = d \) の特殊解の簡単な求め方について

平成 25年秋・26年1月一部修正
富山県立高岡高等学校 片山喜美

数学Aで整数分野を扱うことになり、ユークリッドの互除法と一次不定方程式について学習している。教科書には、「45x + 32y = 4」の整数解をすべて求めよ。」という例題がある。解答の手順としては、

(i) 互除法で 45 と 32 が互いに素であることを示す

(ii) 45x + 32y = 1 の特殊解 \(x = 5, y = -7 \) を見つけ、4倍して 45x + 32y = 4 の特殊解 \(x = 20, y = -28 \) を得る

(iii) 一般解は \(x = 20 + 32n, y = -28 - 32n \) となる。

この手順の中で、特殊解を求める部分が早く正確にできるかどうか。
45x + 32y = 1 の特殊解を 1つ求める方法を考察してみる。

1. 互除法の計算と、それを巡る基本的計算方法

<table>
<thead>
<tr>
<th>□互除法</th>
<th>□左の互除法を巡る計算</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 = 32×1+13</td>
<td>1 = 13−6×2</td>
</tr>
<tr>
<td>32 = 13×2+6</td>
<td>= 13−(32−13×2)×2</td>
</tr>
<tr>
<td>13 = 6×2+1</td>
<td>= 13×5+32×(-2)</td>
</tr>
<tr>
<td>従って、45と32の最大公約数は1</td>
<td>= (45−32×1)×5+32×(-2)</td>
</tr>
<tr>
<td>従って、x = 5, y = −7</td>
<td></td>
</tr>
</tbody>
</table>

右側の巡る計算は案外面倒で、途中、注意しないと正負のミスを起こしやすい。
もう少し大きな数字ではどうか？ 311x + 217y = 1 についてこの計算方法を試してみる。

<table>
<thead>
<tr>
<th>□互除法</th>
<th>□左の互除法を巡る計算</th>
</tr>
</thead>
<tbody>
<tr>
<td>311 = 217×1+94</td>
<td>1 = 29−7×4</td>
</tr>
<tr>
<td>217 = 94×2+29</td>
<td>= 29−(94−29×3)×4</td>
</tr>
<tr>
<td>94 = 29×3+7</td>
<td>= 29×13+94×(-4)</td>
</tr>
<tr>
<td>29 = 7×4+1</td>
<td>= (217−94×2)×13+94×(-4)</td>
</tr>
<tr>
<td>従って、311と217の最大公約数は1</td>
<td>= 217×13+(311−217×1)×(-30)</td>
</tr>
<tr>
<td>従って、x = 30, y = −43</td>
<td></td>
</tr>
</tbody>
</table>

これはかなり大変である。何かよい方法はないのではないかということで、N 先生から次的方法の提案があった。
2. 連立方程式の行基本変形の考え方を用いた計算方法（N先生案）

\[
\begin{align*}
45 \times 1 & \quad + \quad 32 \times 0 \quad = \quad 45 \quad \cdots (1) \\
45 \times 0 & \quad + \quad 32 \times 1 \quad = \quad 32 \quad \cdots (2)
\end{align*}
\]

(1) - (2)
\[
\begin{align*}
45 \times 1 & \quad + \quad 32 \times (-1) \quad = \quad 13 \quad \cdots (3)
\end{align*}
\]

(2) - 2 \times (3)
\[
\begin{align*}
45 \times (-2) & \quad + \quad 32 \times 3 \quad = \quad 6 \quad \cdots (4)
\end{align*}
\]

(3) - 2 \times (4)
\[
\begin{align*}
45 \times 5 & \quad + \quad 32 \times (-7) \quad = \quad 1
\end{align*}
\]

従って、\(x = 5, y = -7\)

\[311x + 217y = 1\] についてこの計算方法を試してみる。

\[
\begin{align*}
311 \times 1 & \quad + \quad 217 \times 0 \quad = \quad 311 \quad \cdots (1) \\
311 \times 0 & \quad + \quad 217 \times 1 \quad = \quad 217 \quad \cdots (2)
\end{align*}
\]

(1) - (2)
\[
\begin{align*}
311 \times 1 & \quad + \quad 217 \times (-1) \quad = \quad 94 \quad \cdots (3)
\end{align*}
\]

(2) - 3 \times (3)
\[
\begin{align*}
311 \times (-2) & \quad + \quad 217 \times 3 \quad = \quad 29 \quad \cdots (4)
\end{align*}
\]

(3) - 4 \times (4)
\[
\begin{align*}
311 \times 7 & \quad + \quad 217 \times (-10) \quad = \quad 7 \quad \cdots (5)
\end{align*}
\]

従って、\(x = -30, y = 43\)

3. 互除法とそれを通る計算を素早くする工夫（片山案）

上記の提案を受けて、片山も計算を素早く正確にする以下の計算方法を考えてみた。

<table>
<thead>
<tr>
<th>互除法</th>
<th>(x, y) を求める計算</th>
<th>計算の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 32</td>
<td>5 7</td>
<td>step 3. 右の -7は -2 - 5 \times 1</td>
</tr>
<tr>
<td>32</td>
<td>1 2</td>
<td>(1段下の右の -2, 左の 5 \times 互除法の商 1)</td>
</tr>
<tr>
<td>13 32</td>
<td>5 2</td>
<td>step 2. 左の5は1 - 2 \times(-2)</td>
</tr>
<tr>
<td>26</td>
<td>-4 0</td>
<td>(1段下の左の1, 右の -2 \times 互除法の商 2)</td>
</tr>
<tr>
<td>13 6</td>
<td>1 -2</td>
<td>step 1. 互除法の最終結果</td>
</tr>
<tr>
<td>12 2</td>
<td></td>
<td>(13 \times 1 - 6 \times 2 = 1)</td>
</tr>
<tr>
<td></td>
<td>1 0</td>
<td>(下から上へ至る)</td>
</tr>
</tbody>
</table>

従って、\(x = 5, y = -7\)

\[311x + 217y = 1\] についてこの計算方法を試してみる。

<table>
<thead>
<tr>
<th>互除法</th>
<th>(x, y) を求める計算</th>
<th>計算の説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>311 217</td>
<td>-30 43</td>
<td>30 - 0 = 30</td>
</tr>
<tr>
<td>217</td>
<td>-30 13</td>
<td>13 - (-30) = 43</td>
</tr>
<tr>
<td>94</td>
<td>26</td>
<td>1 \times (-30) = -30</td>
</tr>
<tr>
<td>29</td>
<td>-4 12</td>
<td>-4 - 26 = -30</td>
</tr>
<tr>
<td>87</td>
<td>-4 13</td>
<td>13 - 0 = 13</td>
</tr>
<tr>
<td>7 29</td>
<td>-4 1</td>
<td>2 \times 13</td>
</tr>
<tr>
<td>4) 28</td>
<td></td>
<td>-4 - 0 = -4</td>
</tr>
</tbody>
</table>

従って、\(x = -30, y = 43\)

この計算方法に慣れると、かなり早く計算できると思う。
右の x, y を求める計算のところで書く量が上の計算に比べて圧倒的に少ない。この方法は、組み立て除法を用いるときとよく似た感覚の計算である。

この方法を多項式的最大公約数の計算に用いることもできる。
問題「$A(x) = x^3 - x^2 + x - 2$, $B(x) = x^2 + x - 2$ について、$A(x)p(x) + B(x)q(x) = 1$ を満たす多項式 $p(x), q(x)$ を求めよ。」

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

\[\text{（下から上へ至る）} \]

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

\[\frac{3x+5}{9} \]
\[\frac{3x^2+2x+4}{9} \]

4. 行列による計算

互除法の進め方を行列で表し、商を順に使った行列の計算で解 x, y を求めていく。先の方法を思いつく前には、この方法が最も速いかなと思っていた。

$a = r_0, b = r_1, \quad r_{k-1} = q_k r_k + r_{k+1}, \quad r_n = d, r_{n+1} = 0$ のように互除法の計算が進んで r_n で最大公約数にいたるものとする。

行列で

\[\begin{pmatrix} r_{k-1} \\ r_k \end{pmatrix} = \begin{pmatrix} q_k & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} r_k \\ r_{k+1} \end{pmatrix} \]

と表せるから、

逆に解いて

\[\begin{pmatrix} r_{k-1} \\ r_k \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_k \end{pmatrix} \begin{pmatrix} r_k \\ r_{k+1} \end{pmatrix} \]

従って、

\[\begin{pmatrix} r_{n-1} \\ r_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_{n-1} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -q_{n-2} \end{pmatrix} \cdots \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix} \begin{pmatrix} r_0 \\ r_1 \end{pmatrix} \]

45x + 32y = 1 に適用する。先に行った互除法から、$q_1 = 1, q_2 = 2, q_3 = 2$

\[\begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 5 & -7 \end{pmatrix} \]

従って、

\[x = 5, y = 7 \]

311x + 217y = 1 に適用する。先に行った互除法から、$q_1 = 1, q_2 = 2, q_3 = 3, q_4 = 4$

\[\begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -3 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -4 & 13 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 7 & -10 \\ -30 & 43 \end{pmatrix} \]

従って、

\[x = 30, y = 43 \]